Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clin Biochem ; 113: 21-28, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2165170

ABSTRACT

OBJECTIVES: Rapid and accurate laboratory tests are essential to support clinical decision-making. Despite the various efforts to control quality in the laboratory, our outpatient chemistry turnaround time (TAT) has deteriorated since 2018. Moreover, these difficulties have accelerated further due to the COVID-19 pandemic. Therefore, we aimed to improve laboratory work efficiency by identifying and eliminating the causes of reduced laboratory work efficiency. DESIGN & METHODS: We surveyed to identify tasks that reduce work efficiency. Based on our survey, a new-concept of work assistance middleware linked to laboratory information system (LIS) was developed. The middleware supports test end-time prediction, automatic real-time TAT monitoring, and urgent test requests so that medical technologists can focus on their chemistry tests. The developed middleware was used for 6 months in laboratory and outpatient clinics, and its effectiveness was evaluated. RESULTS: The median TAT for outpatient chemistry tests was reduced by 6.6 min, from 72.4 min to 65.8 min. And not only did the maximum TAT for the sample decrease from 353 min to 214 min, but the proportion of samples exceeding the TAT target (120 min) also decreased by 77%; from 2.00% in 2010 (1,905 out of 94,989 samples) to 0.46% in 2021 (453 out of 98,117 samples). 2,199 samples were urgently requested through middleware, and they were processed about 15% faster than other samples, effectively performing urgent tests. The test end-time prediction showed an error of 8.6 min in the evaluation using the MAE (Mean Absolute Error) index. CONCLUSIONS: Through this study, the quality and efficiency of the laboratory were improved, and while reducing the workload of medical staff, it contributed to enhancing patient safety and satisfaction.


Subject(s)
COVID-19 , Clinical Laboratory Information Systems , Humans , Outpatients , Quality Improvement , Pandemics/prevention & control , Time Factors , COVID-19/diagnosis , Clinical Chemistry Tests
2.
Healthcare (Basel) ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2082167

ABSTRACT

While there are increasing concerns on COVID-19 situation in Democratic People's Republic of Korea (DPRK, or North Korea), little is known about North Korea's health system function for Non-Communicable Diseases. Given the scarcity of available evidence, a scoping review was conducted in peer review articles from MEDLINE, SCOPUS, and Web of Science, and policy literatures from Rodongshinmun, state-run media in North Korea to analyze the North Korea health system and COVID-19 pandemic. The transition to a market economy is expected to deepen the gap between the rich and the poor over access to health care, causing a new type of health inequality in North Korea. COVID-19 lockdown intensified the DPRK's economic predicament exacerbating shortage of health financing on non-communicable diseases. The case study of mixed evidence from scoping review indicates that NCDs prevention and management are not functional in the transitioning health system under chronic economic crisis and isolation. This study indicates that NCDs prevention and management are not functional in the transitioning health system under chronic economic crisis and isolation. The destabilized markets under COVID-19 lockdown intensified the DPRK's economic predicament and exacerbated the chronic shortage of health financing especially to NCDs.

3.
Plant Biotechnol J ; 20(12): 2298-2312, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2019572

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mice , Animals , Humans , Tobacco/genetics , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , Mice, Inbred BALB C , Antibodies, Neutralizing , Immunity , Mammals
4.
BMB Rep ; 55(9): 465-471, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1998890

ABSTRACT

Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of largescale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment. [BMB Reports 2022; 55(9): 465-471].


Subject(s)
COVID-19 , Cytokines , Humans , Pandemics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics
5.
Pharmaceutics ; 13(9)2021 Sep 19.
Article in English | MEDLINE | ID: covidwho-1430942

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by a new strain of coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly worldwide. Nafamostat mesylate (NFM) suppresses transmembrane serine protease 2 and SARS-CoV-2 S protein-mediated fusion. In this study, pharmacokinetics and lung distribution of NFM, administered via intravenous and intratracheal routes, were determined using high performance liquid chromatography analysis of blood plasma, lung lumen using bronchoalveolar lavage fluid, and lung tissue. Intratracheal administration had higher drug delivery and longer residual time in the lung lumen and tissue, which are the main sites of action, than intravenous administration. We confirmed the effect of lecithin as a stabilizer through an ex vivo stability test. Lecithin acts as an inhibitor of carboxylesterase and delays NFM decomposition. We prepared inhalable microparticles with NFM, lecithin, and mannitol via the co-spray method. The formulation prepared using an NFM:lecithin:mannitol ratio of 1:1:100 had a small particle size and excellent aerodynamic performance. Spray dried microparticles containing NFM, lecithin, and mannitol (1:1:100) had the longest residual time in the lung tissue. In conclusion, NFM-inhalable microparticles were prepared and confirmed to be delivered into the respiratory tract, such as lung lumen and lung tissue, through in vitro and in vivo evaluations.

6.
Ann Lab Med ; 42(1): 1-2, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1365529

Subject(s)
Laboratories , Humans
8.
Healthcare (Basel) ; 9(6)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1243977

ABSTRACT

The widespread outbreak of the novel coronavirus disease COVID-19 has posed an enormous threat to global public health. A different set of policy interventions has been implemented to mitigate the spread in most countries. While the use of personal protective equipment and social distancing has been specifically emphasized, South Korea has deployed massive testing and contact-tracing program from the early stage of the outbreak. This study aims at investigating the effectiveness of testing and contact-tracing to counter the spread of infectious diseases. Based on the SEICR (susceptible-exposed-infectious-confirmed-recovered) model, an agent-based simulation model is developed to represent the behavior of disease spreading with the consideration of testing and contact-tracing in place. Designed experiments are conducted to verify the effects of testing and contact tracing on the peak number of infections. It has been observed that testing combined with contact tracing may lower the peak infections to a great extent, and it can thus be avoided for the hospital bed capacity to be overwhelmed by infected patients. It is implied that an adequate capability of testing and contact-tracing may enable us to become better prepared for an impending risk of infectious diseases.

10.
SELECTION OF CITATIONS
SEARCH DETAIL